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Abstract

A new method is proposed for the analysis of transient wave propagation in a layered stratum[ It makes
use of the separation of variables technique and reduces the spatial dimension of analysis to one[ The
resulting system of hyperbolic partial di}erential equations is solved via element!by!element computations
based on a space!time Galerkin _nite element method[ This method is shown to be more e.cient than the
methods based on convolution[ Numerical examples are presented to illustrate the e}ectiveness of the
method[ Current limitations and possible extensions are also discussed[ Þ 0888 Elsevier Science Ltd[ All
rights reserved[
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0[ Introduction

Analysis of unbounded media for arbitrary types of dynamic loading is of prime interest in many
_elds of engineering such as acoustics\ soil!structure interaction and ~uid!structure interaction[ The
special case of modeling unbounded layers arises in soilÐstructure interaction and damÐreservoir
interaction problems[ Soil is generally modeled as a strati_ed elastic layer resting on rock[ In damÐ
reservoir problems\ the ~uid is modeled as an acoustic layer _xed at the bottom[ The aim of these
analyses is the response of a structure embedded in the in_nite medium[

The standard way of analyzing problems of this type "Fig[ 0# is to truncate the unbounded
medium in order to render the computational domain _nite and apply absorbing boundary
conditions at the computational boundary[ The resulting bounded domain can be analyzed using
a standard _nite element method[ Several ways of obtaining the boundary conditions to simulate
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Fig[ 0[ General method of analysis for unbounded media[

the unbounded medium have been suggested "see Givoli\ 0881 for a review#[ These boundary
conditions can be classi_ed into two broad categories] local and global[ Local boundary conditions
involve derivatives of the _eld variables with respect to space and time and result in an economical
numerical procedure[ However\ their performance is limited to narrow ranges of wavelength along
the computational boundary[ On the other hand\ global boundary conditions are highly accurate
in modeling in_nite media[ They are\ however\ very expensive due to full coupling in space and
time[
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The main focus in the direction of global methods has been on obtaining the impulse response
function of the exterior domain[ The impulse response function is used in conjunction with
convolution to analyze the e}ect of unbounded media[ Impulse response functions can be obtained
using several techniques "Kausel\ 0881#\ including Fourier transformation of the dynamic sti}ness
matrix of the unbounded medium from the frequency domain to the time domain[ The frequency!
domain sti}ness matrix can be computed using the methods of Waas "0861#\ Kausel et al[ "0864#\
Tassoulas "0870# and Lin and Tassoulas "0875#[ These methods result in what have become known
as consistent transmitting boundaries and are based on separation of variables and semi!
discretization[ Another way of obtaining the frequency!domain sti}ness is the use of cloning
suggested by Roesset and Scaletti "0868# and Dasgupta "0871#[ Their methods make use of
similarity and dynamic condensation to obtain the approximate dynamic sti}ness matrix for the
unbounded media[ Recently\ this idea was extended by Wolf and Song "0885# to obtain the
Consistent In_nitesimal Finite Element Cell Method[ This method is a clever use of similarity and
suggests a way of obtaining the impulse response function without resorting to Fourier transforms[
However\ the method requires expensive computations such as solution of a matrix Ricatti equation
and solution of a linear equation of type AX¦XA¦tX � B "A and B are known matrices\ t is a
known scalar and X is the matrix to be determined#[ These convolution!based methods seem
demanding\ even with some attractive recursive techniques suggested by Wolf "0877#[

With the objective of obtaining a more economical global method\ we take a new direction of
solving the governing equations in the space!time domain[ Two main steps involved in these
methods are the use of semidiscretization to reduce the spatial dimension to one and the solution
of the resulting system of hyperbolic partial di}erential equations in an e.cient manner[ The case
of a homogeneous acoustic layer has been successfully tackled by the use of a characteristics
method "see Guddati and Tassoulas\ 0886a#[ The extension of the method to more general
geometries is presented in Guddati and Tassoulas "0886b#[ Although the characteristics method is
highly e.cient compared to all the existing methods\ an equally e.cient extension to the case of
layered media does not seem likely[ In this paper\ we present a new space!time Galerkin technique
for the analysis of transient wave propagation in unbounded layered media[ The method is based
on the concept of domain of determinacy and leads to element!by!element computations[

The outline of the paper is as follows] Section 1 discusses the preliminaries and states precisely
the problems to be solved[ In Section 2\ semidiscretization is discussed\ while Section 3 is devoted
to the new space!time Galerkin "STG# procedure[ Section 4 deals with the computational cost of
the proposed method[ In Section 5\ numerical examples are presented to evaluate the e}ectiveness
of the method[ The _nal section contains a brief summary\ current limitations and possible
extensions[

1[ Problem statement

Waves described by linear second!order hyperbolic partial di}erential equations occur in several
_elds including acoustics\ elasticity and electromagnetics[ In this section\ we state the typical wave
equations of interest and precisely formulate the continuous problems to be solved[ The wave
propagation in linearly elastic media is represented by the following vector wave equation "see
Achenbach\ 0862^ Bedford and Drumheller\ 0883#[
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r
11u

1t1
−9""l¦1G#9 = u#¦9×"G9×u# � f\ "0#

where u is the displacement vector\ r is the density\ l and G are Lame� constants and f is the body
force vector[ When the above equation is restricted to two!dimensions\ we get the governing
equation for wave propagation under plane strain[ In the case of antiplane shear\ the vector wave
equation is reduced to the following scalar wave equation]

r
11u

1t1
−9 ="G9u# � f[ "1#

A similar scalar wave equation represents wave propagation in acoustic media[
It is our aim to simulate the in_nite layered media governed by di}erential equations of the form

of eqns "0# and "1#[ We assume the computational boundary G to be a straight edge perpendicular
to the layer[ Dirichlet conditions are applied at the bottom and Neumann conditions are applied
on the top[ The layer is assumed to start from rest[ The material constants do not vary in the
horizontal direction\ but can vary in the vertical direction[ The problem setting is clearly shown in
Fig[ 1[ For reasons that will be apparent later\ we write the statement of the initial!boundary!value
problem in terms of the speci_c coordinate system of the layer[ Then\ the scalar wave problem
takes the following form[

Problem CLayer] Find the "Dirichlet!to!Neumann# map DtN ] uG : s in which uG is the _eld
variable at the boundary "x � 9# and s � −Gux is the traction on the boundary[ The _eld variable
satis_es the following di}erential equation\ boundary conditions and initial conditions]

rutt−Guxx−"Guz#z � f for x × 9\ z $"−H\ 9#\ t × 9\ "2#

u"x\ z\ t# � u¹ "x\ t# at z � −H\ "3#

Guz"x\ z\ t# � s¹"x\ t# at z � 9\ "4#

u"x\ z\ 9# � ut"x\ z\ 9# � 9[ "5#

Fig[ 1[ Wave propagation in semi!in_nite layered media[



M[N[ Guddati\ J[L[ Tassoulas : International Journal of Solids and Structures 25 "0888# 3588Ð3612 3692

In the case of elastic wave propagation problems\ the boundary conditions can be speci_ed in
terms of displacements "u � u¹# and:or tractions "s = n � s¹#[ The DtN map should relate the tractions
with the displacements[ In the speci_c case of a layer "Fig[ 1#\ the traction on the interaction
boundary is given by]

s � −$
l¦1G

G%
1u

1x
−$

l

G %
1u

1z
[ "6#

The elastic wave propagation problem then takes the following form[
Problem CLayerE] Find the map DtN ] uG : s in which uG is the _eld variable at the boundary

"x � 9# and s\ de_ned by eqn "6#\ is the traction on the boundary[ The _eld variable satis_es the
following di}erential equation\ boundary conditions and initial conditions]

$
r

r%
11u

1t1
−$

l¦1G

G%
11u

1x1
−

1

1z0$
G

l¦1G%
1u

1z1−
1

1x0$
l

G %
1u

1z1

−
1

1z0$
G

l %
1u

1x1� f for

x × 9\

z $"−H\ 9#\

t × 9

"7#

u"x\ z\ t# � u¹ "x\ t# at z � −H "8#

$
G

l %
1u

1x
¦$

G

l¦1G%
1u

1z
� s¹"x\ t# at z � 9 "09#

u"x\ z\ 9# � ut"x\ z\ 9# � 9[ "00#

2[ Semidiscretization

In this section\ the _rst level of approximation is performed] the boundary is discretized to
reduce the spatial dimension of the problem to one[ This is facilitated by the special geometry of
the unbounded domain[ The method is explained in detail for the scalar wave equation and the
semidiscrete counterparts for the elastic wave equation are presented[

2[0[ Scalar wave equation

The following approximation is used for the displacement _eld]

uh � s
N

i�0

fi"z#ui"x\ t# � FT"z#U"x\ t#[ "01#

In the above\ F"z# can be viewed as the basis function vector in the z!direction and U"x\ t# is the
vector of nodal degrees of freedom[

We apply the standard Galerkin method using this approximation[ The test function is of the
same form as the solution]
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duh � s
N

i�0

fi"z#dui"x\ t# � FT"z#dU"x\ t#[ "02#

We get the Galerkin approximation of the variational form of the original equation as

g
z�9

z� −H

duh"Guxx¦"Guz#z−rutt¦f # dz � 9[ "03#

Integrating by parts with respect to z\ we get

−g
9

−H

1duh

1z
G

1uh

1z
dz¦g

9

−H

duhG
11uh

1x1
dz−g

9

−H

duhr
11uh

1t1
dz¦g

9

−H

duhf dz � 9[ "04#

Substituting the approximation for uh gives rise to

−dUTg
9

−H

GFzFT
z dzU¦dUTg

9

−H

GFFT dzUxx

−dUTg
9

−H

rFFT dzUtt¦dUTg
9

−H

Ff dz¦GdUTF=z�9s9 � 9\ "05#

which can be written in the following form]

−GU¦AUxx−MUtt¦F � 9[ "06#

In the above G\ A and M are constant N×N matrices and F is a vector function of x and t]

G � g
9

−H

FzGFT
z dz\ "07#

A � g
9

−H

FGFT dz\ "08#

M � g
9

−H

FrFT dz\ "19#

F"x\ t# � g
9

−H

Ff dz¦GF=z�9s9[ "10#

Note that the matrices A and M are of Grammian type\ and thus positive de_nite[ Matrix G is
positive semide_nite\ in general\ and is positive de_nite when Dirichlet conditions are applied on
one or both of the surfaces[

Our modi_ed problem is to _nd a map between the displacement vector UG and the traction
vector consistent with the approximation made in displacement\ i[e[ if S is the traction vector\ we
need to satisfy the variational equivalence]
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dUTS � g
9

−H

duhsh dz\ "11#

where sh is the approximation of the traction s[ As s � −Gux\ we have sh � −FTGUx[ This results
in the following relation]

dUTS � −dUTg
9

−H

FGFT dzUx [dU $ RN[ "12#

This implies\ using eqn "08# that the traction vector is nothing but

S � −AUx[ "13#

We now present the discrete version of our original problem[
Problem DLayer] Find the map DtN ] UG"t# : S"t# where UG is the displacement vector at x � 9

and S � −AUx is the corresponding traction vector[ We satisfy the following di}erential equations
and initial conditions]

AUxx−MUtt−GU¦F � 9 for x × 9\ t × 9 "14#

U � Ut � 9 at t � 9[ "15#

In the above\ A and M are symmetric positive de_nite and G is symmetric positive semide_nite[

2[1[ Elastic wave equation

The following approximation is used for the displacement _eld]

uh � s
N

i�0

fi"z#ui"x\ t# � $
FT"z#

FT"z#%U"x\ t#[ "16#

To facilitate the presentation\ we de_ne the following matrix functions]

m"a# � g
z�9

z� −H

FTa"z#F dz "17#

g"a# � g
z�9

z� −H

FT
z a"z#Fz dz "18#

d"a# � g
z�9

z� −H

FTa"z#Fz dz[ "29#

Using the above notation\ the coe.cient matrices arising in the Galerkin approximation are]

M � $
m"r#

m"r#% "20#
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A � $
m"l¦1G#

m"G#% "21#

G � $
g"G#

g"l¦1G#% "22#

D � $
d"G#

d"l# %[ "23#

Since m"a# is symmetric and positive de_nite for positive a\ M and A are symmetric positive
de_nite matrices[ Similar arguments imply that G is positive semide_nite[ Following a more
cumbersome procedure than the one followed for the scalar wave equation\ we arrive at the
following discrete counterpart for Problem CLayerE[

Problem DLayerE] Find the map DtN ] UG"t# : S"t# where UG is the displacement vector at
x � 9 and S is the corresponding traction vector given by]

S � AUx¦DU[ "24#

The following are the governing di}erential equations and initial conditions]

AUxx¦"D−DT#Ux−MUtt\−GU¦F � 9 for x × 9\ t × 9 "25#

U � Ut � 9 at t � 9\ "26#

where\ matrices A and M are symmetric positive de_nite and G is symmetric positive semide_nite[
We note that problem DLayer is similar to problem DLayerE if we choose D � 9[ In the next

section we present a method to solve DLayerE using a space!time Galerkin "STG# technique[

3[ Space!time Galerkin method

The method presented here is based on the concept of domain of determinacy which is classical
in the theory of second!order hyperbolic equations "see Courant and Hilbert\ 0855^ Garabedian\
0853#[ For any given curve in space!time with Cauchy data " _eld variable and normal derivative#
speci_ed on it\ the domain of determinacy is de_ned by the region in space!time to which the
function can be extended uniquely[ The basic idea of the method is as follows[ We have a di}erential
equation of the following form]

AUxx−MUtt¦"DT−D#Ux−RU � 9\ "27#

where\ A and M are symmetric and positive de_nite\ and R is positive semide_nite[ We take the
spectral decomposition of A with respect to M\ i[e[ M � QQT and A � QLQT[ L is a diagonal
matrix of eigenvalues which are all positive[ Q is the matrix containing all the eigenvectors[ Then\
the di}erential equation takes the following form]

LU
xx−U
 tt¦"D
T−D
#U
x−R
U
 � 9\ "28#
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Fig[ 2[ Domain of determinacy of a curve segment in space time[

where\ U
 � QTU[ Note that the eigenvalues "li# are squares of the corresponding horizontal phase
velocities of di}erent modes[ Thus the fastest speed is given by]

c � zlmax\ "39#

where lmax is the largest eigenvalue of A with respect to M[ Now\ the domain of determinacy of a
curve segment in space time for this system is the domain bounded by the two fastest characteristics
"Fig[ 2#[ In other words\ the information "Cauchy data# can not travel faster than the highest
phase velocity[ Keeping this in mind\ we construct a mesh in x−t space which will facilitate
element!by!element computation "Fig[ 3#[ The slanted lines in the _gure correspond to the highest!
speed characteristics[

The procedure is as follows[ We know the value of the _eld variable on the line bounding the
mesh on the right "x−ct � 9#[ This is because the _eld variable is not a}ected by the forcing in
the interior[ Physically speaking\ the e}ect of the interior is not felt beyond the wavefront[ The
task is now reduced to solving for U on the mesh[ For the nth time step in the interior "which
corresponds to the nth time slab in the exterior#\ all the parallelogram elements in the nth time
slab are processed _rst[ This is done in an element!by!element fashion starting from the rightmost
element "n\ 0# and proceeding to the left of the time slab[ The order of processing of elements is
clearly shown in Fig[ 3[ This element!by!element processing is possible because every parallelogram
element is contained in the domain of determinacy of its bottom and right edges "see Fig[ 3#[ After
all the parallelogram elements in the time slab are processed\ we need to obtain a relationship
between the _eld variable and its spatial derivative at the boundary x � 9[ This is accomplished
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Fig[ 3[ Domain partitioning for space time Galerkin method[

by solving for the _eld variable on the triangle "n\ n# in a special manner that is consistent with the
parallelograms[ In the following paragraphs\ we explain procedures for both parallelogram and
triangular elements[

3[0[ Parallelo`ram element

The type of updating that is performed for the parallelogram element can be viewed as bidi!
rectional stepping\ i[e[ in space and time simultaneously[ The spatial stepping may result in
numerical dispersion and the temporal stepping may lead to numerical dissipation[ The dispersive
properties have an adverse e}ect on the performance of the method[ Because we will be evaluating
the traction locally in the triangular element\ we require accurate evaluation of the function at the
node next to the boundary[ However\ if dispersion is present\ even for a single time step\ the value
at that node could be completely erroneous[ This makes the method extremely sensitive to the type
of updating used for the parallelogram element[ Initial numerical experiments with space!time
discontinuous Galerkin "STDG# methods suggested that the type of updating that they provide
results in excessive numerical dissipation "this is similar to the behavior of discontinuous Galerkin
methods for _rst order hyperbolics\ Johnson\ 0889#[ For this reason\ we resort\ at this time\ to a
continuous Galerkin method[

Cauchy data for second!order hyperbolic systems include both the function value and its normal
derivative[ This means that the continuous Galerkin method requires C0 continuity[ The basis
functions are chosen to be bicubic Hermitian[ Use of these functions seems to produce no arti_cial
dispersion[ This property can be justi_ed by the non!dissipative behavior of cubic Hermite time!
stepping procedures[ In what follows\ we describe in detail the procedure followed for parallelogram
element[
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For any given parallelogram element "n\ k#\ we de_ne an a.ne map taking the parallelogram to
a unit square]

x¹ �
ct−x
cDtk

¦a0"n\ k#\ "30#

j¹ �
t

Dtn
¦a1"n\ k#\ "31#

where a0 and a1 are chosen such that the image of the bottom right corner of the parallelogram is
"9\ 9# in x¹−j¹ coordinate system[ With this transformation\ we have the following form for the
governing di}erential equation]

AÞUx¹x¹¦CÞUx¹j¹¦MÞ Uj¹j¹¦"DÞ−DÞT#Ux¹¦RÞU � 9\ "32#

where

AÞ �
0

Dt1k 0M−
0

c1
A1 "33#

CÞ �
1

DtnDtk
M "34#

MÞ �
0

Dt1n
M "35#

DÞ �
0

Dtk
D "36#

RÞ � R[ "37#

As an aside\ we note that the matrices AÞ\ CÞ and MÞ are positive de_nite and RÞ is positive semi!
de_nite[ We do not make use of this property now\ but we believe that it may be of key signi_cance
to the stability of the space!time method[

The local problem is to solve for the _eld variable on a unit square "9\ 0#×"9\ 0#\ with the Cauchy
data speci_ed on the bottom and left edges ""9#×"9\ 0# and "9\ 0#×"9##[ As mentioned above\ we
assume bicubic variation of the _eld variable on the square\ i[e[\ the function is represented by its
values and derivatives "U\ Ux¹\ Uj¹\ Ux¹j¹# at the four corners]

U"x¹ \ j¹# � s
3

i�0

Ni"x¹ \ j¹#Ui¦ s
3

i�0

Nx¹
i "x¹ \ j¹#Ui

x¹¦ s
3

i�0

Nj¹
i "x¹ \ j¹#Ui

j¹¦ s
3

i�0

Nx¹j¹
i "x¹ \ j¹#Ui

x¹j¹ [ "38#

The node numbering for both parallelogram element and for the corresponding master element
are shown in Fig[ 4[ The shape functions in the above equations are given by]

N0 � c0"x¹ #c0"j¹# Nx¹
0 � c1"x¹ #c0"j¹#

Nj¹
0 � c0"x¹ #c1"j¹# Nx¹j¹

0 � c1"x¹ #c1"j¹#\ "49#
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Fig[ 4[ Node numbering for parallelogram element] "a# actual element^ "b# master element[

N1 � c2"x¹ #c0"j¹# Nx¹
1 � c3"x¹ #c0"j¹#

Nj¹
1 � c2"x¹ #c1"j¹# Nx¹j¹

1 � c3"x¹ #c1"j¹#\ "40#

N2 � c0"x¹ #c2"j¹# Nx¹
2 � c1"x¹ #c2"j¹#

Nj¹
2 � c0"x¹ #c3"j¹# Nx¹j¹

2 � c1"x¹ #c3"j¹#\ "41#

N3 � c2"x¹ #c2"j¹# Nx¹
3 � c3"x¹ #c2"j¹#

Nj¹
3 � c2"x¹ #c3"j¹# Nx¹j¹

3 � c3"x¹ #c3"j¹#[ "42#

In the above\ ci are the cubic Hermite interpolation functions given by]

c0"a# � 1a2−2a1¦0 "43#

c1"a# � a2−1a1¦a "44#

c2"a# � −1a2¦2a1 "45#

c3"a# � a2−a1[ "46#

We satisfy the di}erential equation\ eqn "32#\ in a weighted!residual sense[ Observations from
time stepping schemes imply that when the weight functions are chosen as the shape functions
associated with U and Ut\ the weighted residual scheme gives almost no numerical dissipation[
Extending this to bidirectional stepping\ we chose the weight functions to be the shape functions
associated with the unknown degrees of freedom "N3\ Nx¹

3\ Nj¹
3\ Nx¹j¹

3 #\ i[e[ we have four weight
functions and sixteen basis functions and satisfy the weighted residual equation as follows]

g�

wiDu � 9\ "47#

where\ D is the di}erential operator in eqn "32#[ In matrix form\ the equation can be written as]

K3N×05NUÞ05N×0 � 9\ "48#
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where\ UÞ contains all the nodal degrees of freedom\ of which 01N are known[ Written in a di}erent
form\ we get

Ku
3N×3NUÞu

3N×0 � Kk
3N×01NUÞk

01N×0\ "59#

where UÞu represents the unknown values at the top!left corner of the parallelogram element "node
3# and UÞk are the known degrees of freedom at the other three nodes "nodes 0\ 1\ 2#[ We notice
that\ if A\ M\ R and D are block!banded with block size b\ Ku is block banded with 3b block size
and the block size for Kk is 01b[ One of the immediate concerns when this procedure is employed
is as to whether Ku is nonsingular or not[ Although it is not trivial to prove the invertibility of Ku\
by extending the logic from time!stepping procedures\ it seems that Ku is nonsingular provided AÞ\
CÞ and MÞ are positive de_nite and RÞ is positive semide_nite and DÞ � 9[ In cases where DÞ � 9\ we
do not have any insight yet as to whether Ku is always nonsingular or not[ However\ several
numerical experiments indicated that Ku is nonsingular for all practical purposes[ Thus\ we have
developed a procedure of _nding the _eld variable over a parallelogram element from the required
Cauchy data[ Furthermore\ numerical experiments veri_ed that this method gives no numerical
dissipation making it an attractive updating procedure[

3[1[ Trian`ular element

Having established the procedure for the parallelogram element\ we can solve for the _eld
variable on all the parallelogram elements in a time slab\ when the Cauchy data is given at the
previous time point "t � tn−0#[ We now need to process the triangle to get a relation between Ux

and U at x � 9[ The straightforward way of doing this is to assume quadratic interpolation between
the boundary node "at x � 9# and the node next to it "at x � cDtn#[ This procedure has two inherent
pitfalls[ First is the property of phase shift arising commonly in extrapolation techniques[ More
importantly\ this process does not give the mixed derivative "Ux¹j¹# at the boundary node[ The mixed
derivative is essential for updating the parallelogram "n¦0\ n#[ Although it is possible to obtain
this by resorting to special tricks of postprocessing\ none of the attempted techniques yielded
satisfactory performance for practical time!step sizes[ For this reason\ we opted to satisfy the
governing di}erential equation in the triangular region in a weighted residual sense[ The interp!
olation used in the triangle is chosen so that it conforms with the cubic interpolation of the two
adjoining parallelogram elements\ "n\ n−0# and "n¦0\ n#\ and with the time!stepping procedure
for the interior[ The degrees of freedom are chosen as "U\ Ux¹\ Ux¹j¹# at the boundary node to be
solved "node 2 in Fig[ 5#\ an auxiliary degree of freedom "f# and the usual degrees of freedom for
the other two nodes "nodes 0\ 1 in Fig[ 5#[

U"x¹ \ j¹# � s
2

i�0

Ni"x¹ \ j¹#Ui¦ s
2

i�0

Nx¹
i "x¹ \ j¹#Ui

x¹¦ s
1

i�0

Nj¹
i "x¹ \ j¹#Ui

j¹¦ s
2

i�0

Nx¹j¹
i "x¹ \ j¹#Ui

x¹j¹

¦Nf"x¹ \ j¹#f[ "50#

In the above\ shape functions for the _rst two nodes are given by]

N0 � c0"x¹ #c0"j¹# Nx¹
0 � c1"x¹ #c0"j¹#
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Fig[ 5[ Node numbering for triangle element] "a# actual element^ "b# master element[

Nj¹
0 � c0"x¹ #c1"j¹# Nx¹j¹

0 � c1"x¹ #c1"j¹#\ "51#

N1 � c0"x¹ #c2"j¹# Nx¹
1 � c1"x¹ #c2"j¹#

Nj¹
1 � c0"x¹ #c3"j¹# Nx¹j¹

1 � c1"x¹ #c3"j¹#[ "52#

The shape functions associated with node 2 are]

N2 � x¹1"0−1x¹j¹1¦1j¹2#\ "53#

Nx¹
2 � x¹1"x¹−j¹#j¹1\ "54#

Nx¹j¹
2 �

x¹1"x¹−j¹#"−2−1j¹¦4j¹1#
7

[ "55#

The interpolation function associated with the auxiliary degree of freedom is a bubble function
which enriches the trial function space and renders the functional variation of the displacement
similar to that in the parallelogram[ This bubble interpolation function is given by]

Nf"x¹ \ j¹# � x¹1"j¹−0#1"j¹−x¹ #[ "56#

We note that this function preserves the C0 continuity of the _eld variable across the parallelogram!
triangle interfaces and is compatible with the time!stepping scheme for the interior[

As in the case of parallelogram elements\ we satisfy the di}erential equation in a weighted
residual sense over the triangle[ The weight functions are chosen to be the interpolation functions
associated with the unknown degrees of freedom ""U\ Ux¹\ Ux¹j¹\ f##[ This results in a matrix equation
of the following form]

K3N×3N

F

G

j

J

G

f

U

Ux¹

Ux¹j¹

f

J

G

f

F

G

j

� R3N×0[ "57#
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In the above equation\ K is sparse provided that all the coe.cient matrices in the governing
di}erential equation are sparse[ K is\ however\ not symmetric[ The part of K corresponding to U

and Ux¹ is coupled with the interior[ For this reason\ when K is not sparse\ it is preferable to
eliminate the variable Ux¹j¹ and f at this level[ In other cases where K is sparse\ we include Ux¹j¹ and
f with the matrix problem for the interior[ Further properties of K that help analyze the stability
of the method are not clear due to its complicated structure[ However\ computations indicate that
the method is stable for a wide range of problems[ We now go on to the analysis of the com!
putational cost of the above procedure[

4[ Computational cost

In the case of constant time step\ we obtain all the required matrices before we start the analysis[
We then use these matrices for each time step[ Also\ the matrix Ku is factorized only once[ The
matrices in eqn "27# are assumed to be banded N×N matrices with bandwidth b[ The matrix Ku

will then have a bandwidth of 3b and Kk will have 01b bandwidth[ This means that a single update
of a parallelogram element\ eqn "59#\ would take O"bN# ~ops for both multiplication and solution[
And we perform n1:1 updates for n time steps making the total cost of these updates to be O"bNn1#[
Because only n triangular updates are performed\ the cost of these updates is an order of magnitude
lower than that of parallelogram elements[ This implies that the total cost for the exterior domain
is O"bNn1#[ The storage required would be O"Nb# for the matrices and 3Nn for the Cauchy data\
i[e[ the total storage would be approximately 3Nn[ If variable time steps are used\ the cost would
be much higher and we suggest using few speci_c time step sizes and storing the corresponding
matrices before the analysis[

Both the storage and computation cost for the exterior are much less than the methods based
on the Green|s function[ In those methods\ we need to store nN1 for the Green|s function in
addition to Nn for the history[ The computational cost is kN1 for the kth time step making the
total cost to be n1N1:1[ It is obvious that the STG method is very e}ective for this part of the
computation[ However\ we note that the current version of the STG method has adverse e}ects
on the solution procedure for the interior[

One obvious question that arises is] how does the STG method compare with other explicit
methods< Numerical experiments indicate that the central di}erence method performs better\
provided that we use superconvergent stress recovery technique[ It is however observed that the
propagation is better modeled by the STG technique than the central di}erence method[ This
implies that the performance of the method is degraded by the treatment of the triangular element[
A superconvergent traction recovery for this method\ if obtained\ could solve this problem[ Also\
numerical experiments indicate that the required time step size for the STG method is larger than
the critical time step size for central di}erence method[

5[ Numerical experiments

The performance of the STG method is illustrated with the help of an application to an elastic
layer in plane strain[ The layer is descretized with one degree of freedom each for horizontal and
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Fig[ 6[ Numerical example] elastic layer in plane strain[

vertical directions[ The displacements are assumed to be linearly varying with depth[ The material
properties and other relevant details are shown in Fig[ 6[ For the treatment of the triangular
element\ the interior time stepping procedure is assumed to be based on constant!average
acceleration[

We _rst carry out the time!harmonic analysis of the above system and obtain the dynamic
sti}ness matrix in frequency domain[ The time step size is assumed to be equal to "cmax:cmin#
min"T\ T9#:5\ where cmax and cmin are the extreme wave speeds\ T is the time period of the applied
load and T9 is the cut!o} time period[ The cmax:cmin factor is chosen such that all the wave
phenomena present are modeled accurately[ Ignoring this will result in erroneous results "not
presented here#[ In Figs 7 to 00\ we compare the results with frequency!domain solution using a
hyperelement "same as a consistent transmitting boundary "Tassoulas\ 0870#[ It can be observed
that the method is fairly accurate\ but has some phase errors at high frequencies[ Also\ the method
seems to smoothen the dynamic sti}ness matrix in the frequency domain\ i[e[ the method supplies
some arti_cial numerical dissipation[ Both of these phenomena are associated with the treatment
of the triangular element which\ at this time seems to be the bottleneck[ As expected\ the coupling
terms in the sti}ness matrix "Figs 8 and 09#\ although close\ are not the same[ Numerical exper!
iments "not presented here# indicate that the convergence rate for the error in the dynamic sti}ness
matrix is O"Dt1#[

Transient analysis is performed on the same system under a square sine pulse described in Fig[
01[ The results are compared with the results from the procedure based on FFT and the hyper!
element[ The time step size is chosen again as "cmax:cmin#min"T\ T9#:5\ where T here is the duration
of the loading[ The displacement is _rst applied in the horizontal direction and the corresponding
forces in horizontal and vertical direction are shown in Figs 02 and 03[ The results compare well
with the exact solution[ Similar comparisons when displacement is applied in the vertical direction
can be found in Figs 04 and 05[ Note that the error at high frequencies is re~ected in the early part
of the response when vertical displacement is applied[ This is because the proposed method does
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Fig[ 7[ Comparison of STG solution with the hyperelement in frequency domain] horizontal force due to horizontal
displacement[

not model properly the waves with speed lower than the mesh speed "this is also typical of time
marching methods "Marfurt\ 0873##[

6[ Concluding remarks

In this paper\ we proposed a space!time Galerkin technique for modeling strati_ed elastic and
acoustic layers[ It is an element!by!element computational technique on a space!time mesh and is
based on the concept of domain of determinacy[ Numerical experiments were presented to illustrate
the accuracy of the method[ The technique is more economical than the Green|s function approach[
The current version of the method is more expensive than the central di}erence method\ but the
stability properties seem better[

The obvious source of computational cost is the use of higher!order interpolation functions[ C0

continuity imposes restriction on the order of interpolation\ and we should resort to discontinuous
Galerkin methods to be able to use lower order interpolation[ However\ at this time\ it is not clear
as to how the numerical dissipation can be minimized\ if not eliminated[ It may be possible to
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Fig[ 8[ Comparison of STG solution with the hyperelement in frequency domain] vertical force due to horizontal
displacement[
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Fig[ 09[ Comparison of STG solution with the hyperelement in frequency domain] horizontal force due to vertical
displacement[



M[N[ Guddati\ J[L[ Tassoulas : International Journal of Solids and Structures 25 "0888# 3588Ð36123607

Fig[ 00[ Comparison of STG solution with the hyperelement in frequency domain] vertical force due to vertical
displacement[

Fig[ 01[ Displacement loading function used in the transient analyses[
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Fig[ 02[ Comparison of STG solution with the hyperelement in time domain] horizontal force due to horizontal
displacement[
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Fig[ 03[ Comparison of STG solution with the hyperelement in time domain] vertical force due to horizontal displacement[
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Fig[ 04[ Comparison of STG solution with the hyperelement in time domain] horizontal force due to vertical displacement[
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Fig[ 05[ Comparison of STG solution with the hyperelement in time domain] vertical force due to vertical displacement[

choose an appropriate weight function to accomplish this[ Further research will be focused on
ways of minimizing the dispersion for the parallelogram element with a discontinuous Galerkin
technique[

Another venue for improvement is the treatment of the triangular element[ The current treatment
of the triangular element results in a sti}ness matrix whose properties are not attractive[ The
possibility of a better treatment of the triangular element is being investigated[
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